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Abstract 

An index subgroup of strong main reflexions and 
cosets of weak reflexions are typical features of crystal 
structures with systematic rational dependence of the 
atom coordinates exhibiting a pseudotranslational 
symmetry. The mean squares of these normalized 
structure-factor sets which deviate significantly from 
unity are interpreted in terms of correlation 
coefficients of the atom coordinates. An asymptotic 
form of the von Mises distribution of a structure 
factor phase is derived which allows for rational 
dependence and makes explicit use of the I EI 2 values 
of the different structure-factor sets. The formula 
provides a basis for the use of phase relationships of 
the type 'weak-strong-weak'  proposed in the recent 
literature. The limits of the method are estimated. In 
particular, symmetry and homometry problems in 
superstructures are more complex than in usual cases 
and their careful consideration is essential for the 
success of procedures intending an automatic sol- 
ution. 

Introduction 

The concept of rational dependence of atom coordin- 
ates in connexion with the statistics of normalized 
structure factors was introduced by Hauptman & 
Karle (1953). Renormalization was proposed in order 
to remove problems imposed by systematically strong 

and weak reflexion classes occurring in this context 
(Hauptman & Karle, 1959). No general statistical 
basis for this procedure was available. Despite some 
successful attempts at direct phase determination for 
superstructures, the method was not much further 
developed. Combined trial-and-error, Patterson and 
Fourier methods turned out to be a powerful tool (cf. 
Schulz, 1976, and references cited therein). 

The application of direct methods to structures 
containing heavy atoms (Beurskens & Noordik, 1971) 
was successful even if the heavy atoms exhibited some 
subperiodicity (cf. D I R D I F :  Beurskens, Bosman, 
Doesburg, Gould, van den Hark, Prick, Noordik, 
Beurskens & Parthasarathi, 1981, and references cited 
therein). In this context procedures using partial 
information (Main, 1976; Heinerman, Krabbendam 
& Kroon, 1977) may be mentioned. Giacovazzo 
(1983) developed a new theory for the use of a priori 
known partial structure information and compared 
his method with the difference structure factor 
( D I R D I F )  approach. D I R D I F  will fail if the input 
model consists of nearly all atoms in idealized posi- 
tions (Beurskens & Bosman, 1982). 

The main difference in the approach of this paper 
compared with others is the explicit use of the infor- 
mation IE(h,)] 2 h (different numbers for different 
classes n = 1 , . . .  p, if rational dependence is promi- 
nent). This is particularly interesting for those super- 
structures where a known 'average' model may 
explain the strong reflexions quite satisfactorily but 
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does not contribute to the classes of the weak 
reflexions at all. 

Renormalization implies that triplets involving 
reflexions from weak cosets are as reliable as if the 
IEI 2 values of the weak cosets were near unity. It was 
argued later that this conclusion is in fact true for 
triplets involving two reflexions of the weak cosets 
(Gramlich, 1975). This was confirmed by adequate 
discussions of the Sayre equation in terms of the 
Fourier transforms of the strong and weak reflexion 
classes (Fan & Zheng, 1981, and references cited 
therein) or in terms of the reflexion classes directly 
(Gramlich, 1978): 

Let the reflexion indices of the subgroup of 
systematically strong reflexions be abbreviated by 
ho, those of the ( p - l )  corresponding cosets by h,, 
n = l . . .  p - 1 (p is the number of subcells in the unit 
cell). Sayre's equation may then be written 

F(h,,) = ( ~ / V ) { ~  F ( h ~ ) F ( h , - h l )  

+ E  F(h~)F(h.-h~)/-  (1) 
h,;, ) 

The ratio of the averaged scattering factors to the 
squared ones is abbreviated by ~. I fh ,  and h "  belong 
to the same coset, h , - h "  = hg is an element of the 
subgroup of the strong main reflexions. Therefore, 
the first sum occurs twice: 

F(h,,) = ( 2 ~ / V )  E F(h~))F(h,, - h~)) 
h6 

(m•n) 

+ ( 4 ) / V )  Y. F ( h ' ) F ( h , - h ' ) .  (2) 
h~ 

This equation is identical with the approximate for- 
mula given by Fan [equation (8) in Fan, Yao, Main 
& Woolfson, 1983] if the last sum is omitted. The 
latter provides an estimate of the error due to the 
approximation in the theory of Fan et al. (1983). In 
particular, for the frequent case p = 2 (two subcells 
in the true cell) the last sum in (2) is void so that the 
equation is independent of the approximation in Fan 
et al. (1983) for this special case. Since h, - h ~  in (2) 
belongs to the same coset as h,, the relationship 
between systematically weak and strong reflexions 
does not provide any direct connexion between 
reflexions of different cosets. Finally, it may be seen 
from (2) that straightforward renormalization is in 
conflict with Sayre's equation. 

Phase triplets involving three reflexions from the 
weak cosets were considered by Boehme (1982). 
Depending on the chosen hypothetical examples, nor- 
mal, aberrant or undefined triplet distributions were 
found. Therefore, if nothing is known about the 
superstructure, the omission of these triplets from the 
phase determination seems to be a wise precaution. 

Corre lat ion  coeff icients  

The normalized structure factor of an equal-atom 
structure with N atoms in the unit cell is given by 

N 
E(h.)=(l/NIl2) E ~(h,,) 

j=l 
with 

scj (h,)  = exp (2zrih,xj). 

The mean-squared structure factors of the reflexion 
classes 

IE(h.)12h'=(1/N) Y. ~(h.)~:j,(h.) h° : v ,  (3) 
jj' 

are known numbers with small deviations from unity. 
Superstructures are characterized by rather large 
values for the strong main reflexions (Vo ~< p, p being 
the number of subcells) and small ones for the cosets. 
Let us now interpret ~(h,,) as complex variables (cf. 
Wooding, 1956), with zero mean; unit variances 

var {~(h,)} = ~(h , )~*(h , )  h = 1 

and covariances 

coy {~-(h,), ~.,(h,,)} = ~(h,,)~:~(h,,) h , j  ~ j,. 

The deviation of the HE[ 2 averages in (3) from unity 
depends on the average covariances: 

I E ( h , ) 1 2 h ° = l + ( l / N )  Y. cov{~:j(h,,),~:f(h,)}. 
j# j"  

For normal structures it is usually assumed that the 
variables are independent with vanishing mean 
covariances. In our case of systematic rational depen- 
dence in superstructures not all covariances are 
equally important. Only atom pairs correlated by the 
pseudo-translations, i.e. the translations correspond- 
ing to the subcells, will provide a relevant contribution 
to the mean covariances. If we postulate that the 
variables corresponding to the atoms in the subcell 
are independent,  only N ( p - 1 )  relevant correlation 
terms occur (cf. Fig. 1). If c, is their mean, then 

c , ,={ IE(h , , )12h" - - l } / (p - - l )=(v . - -1 ) / (p - -1 ) .  (4) 

1 .... N/I:) . . . . . .  

",, 

\ \ "  

. . . . . . . . .  N 
t e e e  ~ 

\ \ 

\x 

I \1 .-. M 
Fig. 1. Schematic drawing of the variance-covariance matrix of 

the variables ~j(h.). The variables are ordered in p sets corre- 
sponding to the subcells. The heavy diagonals represent covari- 
ances of variables related by pseudotranslations. If the number 
of variables per subcell is not constant for all subcells equation 
(4) is only approximately valid. 
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Since the mean variances are unity, c. is the mean 
correlation coefficient of the variables ~(h . )  corre- 
lated by the pseudo translations. The coefficient Co of 
the subset of strong main reflexions (n =0)  varies 
between 0 for normal structures without correlations 
and 1 for the limiting case of exactly fulfilled 
pseudotranslation symmetry. Similarly, c. of the 
cosets is zero for normal structures and negative in 
case of correlations. 

P r o b a b i l i s t i c  theory 

In order to estimate the distribution of products 

E(h ' )E(h ,  - h ' )  

= ( I / N )  ~ exp{27ri[h'(xjt-xj2)+h,,xj2]} (5) 
j l , j 2  

for fixed h, with independent variable h', mean and 
variance are calculated first. Averaging is performed 
separately for the subgroup m =0  and the cosets 
m = l , . . . ,  ( p - l ) "  

p - I  

( I /p)  Z E ( h ' ) E ( h , , - h ' )  h;'' 
r a = 0  

= (1 /Nt /2 )E(h . )  +(1/Np) 
p - I  

X • 2 exp{Zrri[h'(Xjl-Xj2)+h,,xj]} h;'- 
m=O j i  ¢ j2  

The special case j l  = j2  has been separated. Although 
the random contributions of the exponentials in the 
second term of the right hand side cancel for struc- 
tures with postulated rational independence, we must 
consider here the systematic contributions caused by 
the rational dependence. However, the sum over all 
classes 

p - I  

E exp {27rih'(xjt-xj2)} 
m = 0  

becomes systematically small or zero if the difference 
xj l -xj2  is nearly or exactly a pseudo translation. 
Hence 

E(h')E(h.-h ' )h '=(1/  N'/2)E(h.) (6) 

in accordance with the formulae mentioned in the 
introduction. 

The second moment is given by 
p - I  

IE(h')E(h,,-h')12h'=(1/P) E I E ( h ' ) E ( h , - h ' ) l  2h: 
m = 0  

If E ( h ' )  and E ( h , - h ' )  are considered as random 
variables and assumed to be independent, the 
averages of the products on the right hand side can 
be approximated by the products of the averages 
VmV.-m. An appropriate vector numbering of the 
cosets is required here; e.g. each coset will be uniquely 
characterized by the index of its representative 
reflexion in a cell reciprocal to the subcell. In order 

to maintain a one-to-one correspondence of the num- 
ber n and the characteristic vector n of any coset, the 
vector n - m is again to be replaced by the representa- 
tive one of the coset to which it belongs. Neglecting 
terms containing 1/N, the variance becomes 

p - I  p - I  

( l /p )  ~ VmV._m = l+{(p-1)2/p} ~, CmC.-m. (7) 
m = O  m = 0  

If (6) is interpreted as an estimate of E(h , )  through 
a large sum of, say, s terms 

(s)  

E(h,,) = )-" {(N'/2/s)E(h')E(h,,-h')}, 
h '  

its probability distribution is approximately a 
Gaussian normal distribution with mean 

(s)  

iz= 2 {(N'/2/s)E(h')E(h.-h')} 
h' 

and variance 

o .2= (N/s  2) / )m/ . )n_m =(N/s )  Z VmV.-,,,. 
h' 0 m = O  

The conditional probability distribution of the phase 
q~ of E, given its magnitude, is avon Mises distribution 
(Heinerman, Krabbendam & Kroon, 1977): 

P{~o(h.)} = { l/E2rrlo(a.)]} exp {a. cos [~o(h.)-/3]} 

(8) 
with 

(s)  

a.  exp (i/3) = Y~ K(h.h ' )  exp {i[~o(h') +q~(h.-h ')]} 
h' 

and 

p - 1  

K(h.h ' )={2p/(N '/2 ~ VmV.-m)} 
m = O  

×E(h.)E(h')E(h.-h ') .  

The formula given here is an asymptotic one for a 
large number of contributors. Therefore, an extrapo- 
lation of (8) to triplet relationships (s = 1) is not 
justified. However, triplet relationships compatible 
with (8) may be considered; if the compatible 
probability distribution of triplets is denoted by Pc it 
follows that 

1 
Pc { q~ (h.)} = 27rio[ K (h. h'] exp { K (h. h') 

x cos [~o ( h . ) -  ~o ( h ' ) -  ~o ( h . -  h')]}, (9) 

with the value of K(h.h ' )  given by (8). This formula 
may be compared with that given by Cochran (1955) 
for the estimate of a phase through a triplet relation- 
ship. The only difference is (7) occurring in the 
denominator of K(h.h ' )  which now becomes depen- 
dent on the coset n. 
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For n =0,  the subset of strong main reflexions, 
triplets of the type 'strong-strong-strong' and 'strong- 
weak-weak' occur, and are governed by the parameter 
K(hoh'). For n > 0 'weak-strong-weak' and 'weak- 
weak-weak' type triplets appear with the stronger 
parameter K(h,h ') .  Thus the distribution of the trip- 
lets is apparently no longer uniquely defined (except 
for the 'strong-strong-strong.' ones). The distribution 
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Fig. 2. Dependence of the cosine invariants 

cos ~" = cos [~,( - h) + ~,(h') + ~,(h- It')] 

on 

K ( h h ' ) -  ( 2 / N ' / 2 ) l E ( h ) E ( h ' ) E ( h - h ' ) ]  

for the test example mesolite. (a) Conventional normalization. 
(b) Separate normalization (renormalization) for sets k -  
0(rood 3) and k-- l(mod 3). (c) Dependence on K(h.h ' ) .  Con- 
ventional normalization. K(hoh') is used for 'strong-strong- 
strong' triplets and K(hth') for the remaining ones. The calcula- 
tion of K(h.h ' )  according to equation (8) is based on vo = 

[E(ho)12h° = 2.33 and v~ = v 2 = I[E(h,)[ 2h' =0.32. 

seems to depend on the coset type of the phase to be 
determined by the triplet. A possible way out of this 
dilemma is to assume that the observed probability 
distribution of the triplets of a given type may be 
estimated through the strongest value of K: e.g. 
K(h,h ' )  for triplets 'weak-strong-weak' connecting 
reflexions of the coset n. The value K (h0h') of (8) for 
triplets of the same type 'strong-weak-weak' con- 
tributing to a strong main reflexion would correspond 
to the low weight for this case. 

Test example  

Mesolite, Na2Ca2AI6Si903o.8H20 , is a zeolite of the 
natrolite group with an interesting superstructure 
caused by cation ordering in the zeolite cavities. The 
structure was solved by Adiwidjaja (1972) with trial 
and error and later, independently, by Gramlich 
(1975) using M U L T A N  (Main, Woolfson, Lessinger, 
Germain & Declercq, 1974). Crystal data are a = 
18.41 (1), b =56.67 (1), c = 6.547 (2) A; space group 
Fdd2.  The crystal structure is strongly related to 
natrolite and scolezite with a threefold b axis 
(Adiwidjaja, 1972). 

Cosine invariants of all three types 'strong-strong- 
strong', 'weak-strong-weak' and 'weak-weak-weak'  
are analysed as a function of K(h,h ') .  Fig. 2(a) shows 
the distribution for conventional normalized structure 
factors. Triplets of strong reflexions only and those 
with reflexions from the weak cosets clearly belong 
to two different populations. Separate normalization 
of the subset of strong reflexions and the weak coset 
does not provide a well defined dependence of the 
invariants on K(h,h ' ) ,  cf. Fig. 2(b). In principle, the 
coset n =  1 of reflexions with k-= 1 (mod3) is 
sufficient for the description of the systematically 
weak reflexions since the coset k - 2  (mod3) is 
Friedel conjugate with respect to the latter. If the 
cosine invariants are plotted against K(h,h ' )  with 
values of the index n chosen as described in the 
previous section, a satisfactorily smooth curve is 
obtained (Fig. 2c). The distribution of the triplet 
phases for a given value of K(h,h ' )  is compared with 
the theoretical curve Pc(g') in Fig. 3. 

Limits of  the method 

Although the theory presented here is quantitatively 
different from the method of Fan et al. (1983) it 
confirms the essential features: if nothing is known 
about the superstructure 'weak-strong-weak' triplets 
may be very useful, whereas triplets involving three 
reflexions of the weak cosets may be much less 
reliable. The theory is based on the assumption of an 
equal-atom structure, and the method will, in fact, 
fail for certain heavy-atom structures. 

Cochran (1955) has shown that the integral over 
the cubed electron density is a powerful overall esti- 
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mate of the triplets: 

1 

VJJ~ ( p _ ~ ) 3  d x = ( l / V  2) ~ , F ( h ) F ( - k ) F ( k - h ) .  
0 h,k 

V is the unit-cell volume; p and /5 are the electron 
density and its average. Trivial triplets with h--0 ,  
k - -0  or h - k  are excluded from the primed sum: 
F(000) may be formally set equal to zero. p(x) is 
decomposed into the subcell part pp, the Fourier 
transform of the strong main reflexions, and Ap, the 
difference or complement structure [the latter concept 
was proposed by Jeffery (1964) for the Fourier trans- 
form of the weak coset reflexions]: 

p(x) = pp(x) + AR(x). (I0) 

Using these terms in the integral above, the cases with 
squared and cubed complement structure are of 
special interest: 

1 

V ff~ (pp -/5) Ap 2 d x  
o 

=(I/V 2) ~'. = F ( h o ) F ( - h ' ) F ( h ' , - h o ) .  
ho,h~ 

( l l )  

The right hand side is the sum of the ' s t rong-weak-  
weak' triplets. The left hand side may be considered 
as a correlation coefficient between pp and Ap2: 
pp Ap 2 -/5~--~p. It is generally positive but may be zero 
or negative if the maxima of Ap 2, the squared comple- 
ment structure, coincide with values of the subcell 
structure which are less than or equal to the average 
electron density/5 =/sp. This may be possible if heavy 
atoms do not contribute significantly to Ap, whereas 
light atoms do. Hence, the typical conditions for 
successful application of D I R D I F  (Beurskens et al., 
1981) describe the limits of the direct method of this 
paper and of Fan et al. (1983). The converse is also 
true, so that the methods are in fact complementary. 

0 0 ~0 0 

I~ 0 ° 

8 ,s .1 ~ 0 ~  o 

8 

I i , I , ~ I , , I 

- :t - :~/2 0 :t/2 :t 

Fig. 3. Observed and calculated distribution Pc(~) for triplets 
with K(h,h')=0.36. The observed data are taken from the 
interval K(h,h') =0.36 (12). 

The integral over the cubed complement structure, 
I 

VJ'J'J" (Ap) 3 d x = ( 1 / V  2) E F ( h , ) F ( - h ' ) F ( h ' - h , )  
0 h . ,h ,~  

(12) 

with 

n # 0, m # 0, n ~ m, 

is given by the sum of the 'weak-weak-weak'  triplets. 
The integral over Ap is zero since the Fourier trans- 
form of Ap is zero at the origin by definition. There- 
fore, the integral over (Ap) 3 is probably zero: normal 
and aberrant 'weak-weak-weak'  triplets are equally 
probable. However, if a few large negative peaks in 
Ap are compensated by a greater number of small 
positive ones, aberrant triplets are highly probable. 
Correspondingly, normal triplets may be expected in 
the opposite case. According to the examples given 
by Boehme (1982), 'weak-weak-weak'  triplets with 
a high value of K (hh') may be more reliably ~r than 
0 under specific conditions. Equation (12) is a general 
criterion for these conditions. 

S y m m e t r y  a n d  o r i g i n  d e f i n i t i o n  

Solving superstructures by direct methods in two steps 
as proposed by Fan et al. (1983) requires the usual 
origin definition and a secondary one for the subcell 
structure. This may be seen most easily in the follow- 
ing example. Consider a centrosymmetric superstruc- 
ture (P1) where all three edges of the subcell (space 
group P1 assumed for the subcell structure) are 
doubled (p -- 8). Only one of the eight non-equivalent 
symmetry centres in the subcell can be maintained 
for the superstructure. In order to guarantee the 
occurrence of the correct solution in the multisolution 
set all possible non-equivalent origins of the subcell 
structure must be taken into account systematically. 
Therefore, it is not sufficient to select the seminvariant 
starting reflexions solely according to the criteria of 
optimal strategy as is done by the C O N V E R G E  pro- 
cedure of M U L T A N .  In the example above, the 
seminvariant reflexions must be carefully selected so 
that the origin of the subcell structure can be properly 
defined. If this is done, the multisolution procedure 
will of course provide the complete set of non- 
equivalent maximal subgroups of the superspace 
group automatically, and the correct solution can be 
found. For a discussion of non-equivalent subgroups 
see Billiet (1981). 

This behaviour can be explained by the relatively 
low weight K (hh') allotted in (8) to any contribution 
of systematically weak reflexions to the strong ones. 
This compares well with the fact that the weak coset 
reflexions which are necessary for complete origin 
definition do not contribute to the first step in the 
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two-step procedure of Fan et al. (1983). Although an 
automatic solution of the secondary origin problem 
may be feasible without'=the knowledge of the space 
group of the subcell structure,* it would be much 
more efficient if this space group were known. 

The weak link between different cosets 

The probabilities (8) indicate that there is a weak link 
between different cosets through the phase relation- 
ships. This is accounted for in the two-step procedure 
of Fan et al. (1983) by disregarding relationships 
involving three systematically weak reflexions. Phase 
shifts of up to three cosets (or up to six if Friedel- 
connected pairs are counted separately) can be fixed 
by origin definition. In addition, at least one reflexion 
of any possibly remaining coset should appear in the 
starting set. In the P 1 example above, the seven cosets 
(in this case parity classes) must be present in the 
starting set. The multisolution procedure will then 
provide all possible phase shifts of the cosets. 

However, if there are no phase restrictions for the 
reflexions of the cosets, troubles may arise. Fan et 
al.'s (1983) equation, i.e. equation (2) with the second 
sum neglected, is invariant under an overall phase 
shift of the considered coset n. Examples have been 
described by Boehme (1983). It cannot be expected 
that such  a phase shift, introduced by the starting 
phases, will be refined in a tangent refinement pro- 
cedure based on Fan et al.'s equation. The correct 
solution might be unrecognizable if the starting 
phases of the multisolution method are varied in the 
usual steps of about rr/2. The use of all triplets, as 
indicated by (8), in the final stages of the tangent 
refinement could perhaps solve the problem. Further- 
more, the inclusion of these triplets is necessary in 
order to make the procedure compatible with the 
Sayre equation if statistical weights are used as pro- 
posed by Hull & Irwin (1978). 

It has been tacitly assumed that the phase problem 
has a unique solution (cf. the discussion in Hauptman 
& Karle, 1953). Practical experience has confirmed 
this assumption: sets of homometric structures fulfill- 
ing all criteria of reasonable interatomic distances 
and thermal parameters are extremely rare. 
Homometric sets of superstructure solutions with 
different phase shifts of the cosets may not be easily 
discernible by the usual figures of merit because of 
the inherent weak link between the cosets. Careful 
refinements and critical discussions of facts of crystal 
chemistry may be necessary in order to obtain a final 
unique solution of the superstructure problem (cf. 
Schulz & Tscherry: Appendix in Tscherry, Schulz & 
Laves, 1972). 

* For example, by requiring that the greatest common divisor 
of all determinants formed by the starting reflexions from the strong 
subgroup of main reflexions should equal p, the number of subcells 
in the unit cell. 

Conclusion 

If pseudotranslation symmetry of a structure is caused 
by more or less exactly fulfilled rational dependence 
of heavy atoms, difference structure factor methods 
(van den Hark, Prick & Beurskens, 1976; Hull & 
Irwin, 1978) are superior to renormalization pro- 
cedures. The latter will invariably fail in the limiting 
case of weak reflexion cosets caused exclusively by 
very light atoms accompanied by very heavy ones in 
rationally dependent positions. 

Although renormalization has been a successful 
tool for the direct solution of superstructures it 
implies the disadvantage that phase relationships 
between three reflexions of the weak cosets should 
be removed (Fan et al., 1983). Consistent contribu- 
tions of all triplets are provided by a coset-dependent 
reliability parameter K(h,h') given in (8) of this 
paper. Renormalization is not necessary but the tech- 
nical disadvantage of the selection of a representative 
number of reflexions for each coset is implied. This 
will of course be managed automatically if renormal- 
ized structure factors are used. However, renormaliz- 
ation implies a modified K, , (h ,h ' )  dependent not 
only on coset n but also on coset m of any contributing 
reflexion h',,, in order to remain compatible with 
Sayre's equation. 

The influence of rational dependence on higher- 
order invariants is not well known. One of the few 
available examples is the crystal structure of prosta- 
glandin E 1-9-sulfone (Fronckowiak, Fortier, DeTitta 
& Hauptman, 1977) which was solved using quinets 
only. Since two independent molecules in the cell are 
approximately related by ' ~c, the /-odd data are sys- 
tematically weak. The discriminants of 'strong- 
strong-strong-weak-weak' type quintets provided 
very reliable estimates of the quintets, even though 
the absolute values of the discriminants were small 
compared with those of the 'strong-strong-strong- 
strong-strong' quintets (Hauptman, 1983). Therefore, 
it might be expected that relationships for higher- 
order invariants exist which are similar to those 
described in this paper for triplets. 

I thank Professor H. Burzlaff for his interest during 
a Workshop on superstructures held in Erlangen, 
Professor J. D. Dunitz for fruitful discussions, Pro- 
fessor H. Hauptman for a stimulating comment and 
Dr Lynne McCusker for critically reading the manu- 
script. 
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Erratum 

Acta Cryst. (1984). A40, 616 

The standardization of inorganic crystal-structure data: erratum. By E. PARTHI~ and L. M. GELATO, 
Laboratoire de Cristallographie aux Rayons X, Universit~ de Genbve, 24, quai Ernest Ansermet, CH-1211 Genbve 4, 

Switzerland. 

(Received 14 June 1984) 

There is a printing error in Table 8 of Parth6 & Gelato 
[Acta Cryst. (1984), A40, 169-183]. For PaBr 3 the published 
space group was Ccmm, while that for the standardized 
data is Cmcm. 

All information is given in the Abstract. 
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different frdm that of  publication. 

Acta Cryst. (1984). A40, 616 

Melting, localization, and chaos. Edi ted  by R. K. 
KALIA and  P. VASHISTA. Proceed ings  of  the 9th 
Midwes t  Sol id-State  Theory  S y m p o s i u m ,  N o v e m -  
ber  1981, A r g o n n e  Na t iona l  Labora tory ,  USA. Pp. 
xx i i i+301 .  Elsevier  Science Publ i sh ing  Co Inc, 
1982. Price US $60.00, Dfl 160.00. 

The book contains the reprints of 52 contributed and 16 
invited papers, presented at the symposium mentioned 
above. It can be regarded as a review of the field of the 
melting process and of atomic arrangements in non-crystal- 
line materials. Concerning the melting process, different 
models are discussed, both from the theoretical point of 
view and in the form of computer simulation. Also, the 
molecular dynamical treatment of phase transitions is 
described. The book includes a comprehensive theoretical 
and experimental treatment of metal-insulator transitions 

0108-7673/84/050616-0 ! $01.50 

in disordered metals, thin films and amorphous semicon- 
ductors. Also treated are those phase transitions which are 
important in the theory of the mutual interaction of elemen- 
tary particles, such as quarks and gluons. Throughout the 
whole volume there is scarcely one remark that has to do 
with crystallographic problems; however, for the amorphol- 
ogist, the book may be of some interest. The main interest 
it will serve, however, will be for research workers con- 
cerned with the fields of percolation, critical phenomena 
etc. The book is of interest for the experimental as well as 
for the theoretical physicis t -but ,  with experience, not so 
much for beginners. One has the impression that the frame 
for that conference, and therefore also for the ensuing 
conference proceedings, was a little bit too wide-spread. 
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